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ABSTRACT 

IDENTIFICATION OF IMMUNOMODULATORY CELLS INDUCED 

BY 670 NM LIGHT THERAPY IN AN ANIMAL MODEL OF 

MULTIPLE SCLEROSIS 

 

 
by 

 

 

 

Erin C. Koester 

 

 

 

 

The University of Wisconsin-Milwaukee, 2013 

Under the Supervision of Dr. Jeri-Annette Lyons 

 

Multiple sclerosis is an autoimmune, demyelinating disease characterized by 

neurodegeneration and inflammation of the central nervous system.  It affects 

approximately 250,000 people in the United States alone, with women being affected two 

times more than men.  Experimental Autoimmune Encephalomyelitis (EAE) is the 

primary animal model of MS, sharing clinical signs and histopathology with MS.  The 

current paradigm supports MS/EAE induction by myelin reactive CD4
+ 

T cells that cross 

the blood brain barrier to induce an inflammatory response that leads to the destruction of 

the myelin sheath and eventual loss of axons.  Recent data suggest that axonal loss and 

disease progression are due to accumulation of oxidative stress.  Most of the current 

therapies for MS are only useful early in the disease process, slowing disease progression 

but not preventing it, probably because they do not affect oxidative stress.  With previous 

studies showing relevance of mitochondrial dysfunction to neurodegeneration, new 
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therapies designed to maintain mitochondrial function could prove beneficial.  

Photobiomodulation is an alternative therapy proven effective in the treatment of chronic 

inflammation and neurodegeneration.  Previous data demonstrated that 670nm near-

infrared (NIR) light-emitting diode (LED) is effective in the amelioration of the disease 

in a mouse model of MS.  Furthermore, experiments suggested an important role for anti-

inflammatory cytokines, particularly Interleukin-10 (IL-10), and maintenance of 

mitochondrial function as important mechanisms mediating disease amelioration.  The 

current studies sought to characterize the immune cell population induced by 

photobiomodulation which is responsible for the clinical effect noted.  With a deeper 

understanding of the mechanism of protection against disease, the 670nm light would be 

a promising adjunct therapy for the treatment of MS.   
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CHAPTER I:  INTRODUCTION 

Multiple Sclerosis  

Multiple sclerosis (MS) is a disease of unknown etiology characterized by 

inflammation, loss of myelin, axonal damage, and neurodegeneration of the central 

nervous system (CNS) [1].  MS is thought to be a CD4
+
 T cell-mediated autoimmune 

disorder [2].  It affects an estimated 250,000 people in the United States alone [3].  As 

seen with many autoimmune disorders, MS plagues more females than males and is 

typically diagnosed between 20 to 40 years of age [1].  While the general etiology of the 

disease is unknown, MS affects genetically susceptible individuals, with contribution 

from environmental factors [4].    

The symptoms of MS, including sensory disturbances, memory loss, double 

vision, muscle weakness and paralysis, vary from individual to individual making it a 

difficult disease to diagnose [5].   Paralysis and loss of function are hallmark symptoms 

of MS seen in advanced stages of the disease. Studies suggest that a cascade of events 

beginning with mitochondrial dysfunction and immune infiltration lead to axonal loss 

that contributes to MS pathology and disease progression [6].   While current therapies 

exist to slow disease progression and to treat the symptoms of the disease, the overall 

goal of lasting disease amelioration has yet to be realized. 

 Three main clinical phenotypes of MS have been identified: relapsing-remitting 

MS (RR-MS), primary progressive MS (PP-MS), and secondary progressive MS (SP-

MS) [1].  The majority of patients display RR-MS in the beginning stages of the disease.  

This phenotype is characterized by bouts of acute inflammation, resulting in neurological 

dysfunction, followed by periods of remission [3,7].  Typically, RR-MS patients enter 
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into the SP-MS within in 5-10 years of diagnosis, characterized by progressively worse 

disease without the relief of remission.  Finally, approximately 15% of MS patients have 

PP-MS.  From the onset of PP-MS, patients experience a progressively worse disease, 

which in severe cases can be quite rapid, again without any bouts of remission [3, 4].  It 

is not clear, however, the exact factors that trigger the disease into these distinct disease 

courses [4].  Figure 1 shows a representation of the typical disease course associated with 

each clinical phenotype [8]. 

 

1. Graphical representation of the 3 main clincial phenotypes of MS 

 

 

Experimental Autoimmune Encephalomyelitis 

Much has been learned about the pathogenesis of MS through experiments in the 

Experimental Autoimmune Encephalomyelitis (EAE) animal model. EAE is also 

routinely used to identify therapeutic targets and to investigate novel therapies [9]. EAE 

mimics the clinical signs, histopathology, and disease mechanisms associated with MS.   

The clinical course of EAE presents as bouts of partial to full hind-limb paralysis, 

progressing to forelimb involvement with severe disease. Like MS, EAE is a CD4
+
 T 

cell-mediated demyelinating disease of the CNS.  The disease is initiated through active 

Figure 1.  Graphical representation of the 3 main clinical phenotypes of MS. 
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immunization using myelin basic protein (MBP), proteolipid protein (PLP), or myelin 

oligodendrocyte glycoprotein (MOG) [10] emulsified in an adjuvant that will promote an 

inflammatory response to the myelin proteins [11].  PLP and MBP are major constituents 

of myelin, located internally, important to maintaining the structural integrity of the 

myelin sheath, whereas MOG, a minor contributor to myelin, is a type I transmembrane 

protein located on the outer surface of the myelin sheath and oligodendrocytes [12-14].  

Due to its external location, MOG is considered a candidate antigen for the initiation of 

MS/EAE, whereas PLP and MBP are thought to be important to disease progression or 

relapse [14].  Several studies using anti-MOG antibodies have supported its role as an 

important auto-antigen in demyelinating CNS diseases.  

Similar to MS, the EAE disease course varies depending on the species, strain and 

antigen used. Each of these different models previously mentioned is considered a model 

of the stage of MS that it mimics.  For example, disease in Lewis rats is an acute, 

monophasic disease, while disease in SJL mice presents as a relapsing/remitting disease 

reminiscent of the early stage of MS in patients.  EAE in C57BL/6 mice, initiated with 

MOG35-55, used in the proposed studies, presents as a chronic relapsing/progressive 

disease similar to the chronic phase noted in established MS patients.  Figure 2 depicts 

disease course based on species, strain, and peptide used.  Auto-antibodies reactive to 

MOG contribute to the immunopathological mechanisms of the disease, including 

demyelination and axonal loss with the CNS [12,13].  
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Immunopathogenesis of MS/EAE 

Autoimmunity 

In a healthy individual, CD4+ T cells regulate the immune system.  In the case of 

autoimmunity, the body cannot distinguish between self and non-self, thus creating an 

immune response to its own cells and tissues.  Typically, autoreactive T cells with a high 

affinity toward self-peptide are eliminated during maturation within the thymus, termed 

“central tolerance” [15].  When these autoreactive T cells evade deletion, autoimmunity 

may occur.  In healthy individuals, these cells remain in a quiescent state, termed 

“peripheral tolerance”. Multiple mechanisms of peripheral tolerance have been proposed 

[16].  Similarly, multiple mechanisms have been proposed by which tolerance is broken, 

leading to the onset of autoimmunity [16-19].  

One hypothesis is put forth to explain the onset of autoimmunity is molecular 

mimicry.  In this case, small pathogenic peptide fragments that share similar structures or 

sequences as self-antigens are delivered onto the major histocompatibility complex 

Figure 2.  Disease course based on species, strain, and antigen used for onset of disease. 

2. Disease course based on species, strain, and antigen used for onset of disease 
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(MHC) -class II molecules [15].  Similarly, this results in reactivity toward self-antigens 

and elicits a cascade of inflammation and neurodegeneration.  Another hypothesis is that 

autoimmunity, including MS, is initiated through a viral infection.  Theiler’s murine 

encephalomyelitis virus (TMEV) is a CD4
+
 T cell-mediated demyelinating disease that 

mimics MS-like symptoms [17, 18].  In this model, low levels of the infectious virus can 

be detected months after inoculation within the CNS [18].  Demyelination is brought on 

by virus-specific Th1 cells and autoreactive T cells are stimulated containing virus-

encoded superantigens [17].  The final hypothesis put forth is epitope spreading.  Epitope 

spreading occurs when epitopes, distinct from the epitope inducing the disease, become 

reactive during chronic inflammation [19].  In this case, encephalitogenic myelin proteins 

are primed secondary to myelin destruction with CD4
+ 

T cells specific for multiple 

epitopes [19].  These three hypotheses are represented in Figure 3.  While all of these are 

plausible explanations of the evolution of MS, it is most likely the combination of the 

factors that play a role in disease initiation and progression [15]. 

 

 

 

 

 

 

Figure 3.  Plausible explanations for autoimmunity in MS/EAE 
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T cells 

The role of T cells in the pathogenesis of MS/EAE was introduced over 30 years 

ago by Ben-Nun et al. through the adoptive transfer of T cells specific for CNS auto-

antigens [20, 21]. Extensive research supports the understanding that MS/EAE are 

initiated by MHC class II restricted, myelin-reactive CD4+ T cells [4, 7, 22].  These cells 

are activated in the periphery and infiltrate the CNS, leading to disease pathology [23].   

Effector T helper (Th) cells are responsible for secretion of cytokines, and are 

further broken down into subsets, including but not limited to, Th1, Th2, and Th17 cells.  

Th1 cells, generated in the presence of Interleukin (IL)-12 and IL-18, are characterized as 

pro-inflammatory cells. This population of cells is defined by secretion of pro-

inflammatory cytokines, IL-2 and Interferon-gamma (IFN-γ) [20, 23]. These are 

cytokines that play a central role in initiation of encephalitogenic T cells, as wells as the 

progression of CNS inflammation in MS and animal models [23, 24].  Differentiation 

into the Th2 subset occurs in the presence of IL-4.  These cells are considered anti-

inflammatory and are known to be protective in EAE/MS [25]. This population is 

characterized by the secretion of the cytokines, IL-4, IL-5, IL-13, and IL-10. It has been 

recently hypothesized that Th17 cells also play a large role in MS pathology [26]. This 

population, induced in the presence of transforming growth factor beta (TGF-β) and IL-6, 

secrete the pro-inflammatory cytokine IL-17 [27].  Together, Th1/Th17 plays a role in 

MS induction and pathogenesis [27]. 

Th1 cytokines are responsible for the recruitment and activation of inflammatory 

cells. IFN-γ is thought to be central in mediating the pathogenesis of MS/EAE.  IFN-γ 

facilitates the activation of macrophages.   It is a pro-inflammatory cytokine that drives a 
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chronic inflammatory pathway leading to tissue injury [28].  However, the understanding 

of the role of IFN in the disease process is confounded by the observation that the 

deletion of IFN-γ does not eliminate the disease but increases the clinical disease and 

pathology [24].  This exacerbation is not only seen in EAE, but in other Th1 autoimmune 

conditions such as experimental autoimmune uveitis [24].  This finding indicates that 

IFN-γ is not only responsible for disease progression, but also aids in the regulatory 

functions of the immune system. 

Tumor necrosis factor-α (TNF-α) is typically released in response to a bacterial 

infection and is associated with a Th1 cell response eliciting CNS inflammation.  Like 

IFN-γ, however, the mice deficient of this cytokine go on to develop a worse disease than 

their wild-type (WT) counterparts [25].  In a study by Probert et al. over-expression of 

TNF-α has also been found to be cytotoxic to oligodendrocytes resulting in severe 

demyelination [29].  

Elevated levels of IL-17, produced from Th17 cells, have also been established in 

MS patients [30].  A study by Komiyama et al. demonstrates the pathogenic role that IL-

17 plays in MS/EAE.   Mice deficient in IL-17 display a less severe disease course than 

WT mice, indicating that IL-17 plays an important role in the development of EAE.  

Interestingly, mice devoid of IFN-γ had higher IL-17 production compared to the WT 

controls.  This further blurs the role of IFN-γ as it displays both pathogenic and protective 

roles as a mediator of Th1 cells as well as a suppressor of IL-17 cytokines [31].   

Recent data suggest that chronic inflammatory diseases such as MS, Th1 cells 

play a pathogenic role, whereas Th2 cells display protective qualities [32].  Th2 cells 

counter the roles of Th1 cells through the release of anti-inflammatory cytokines that aim 
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to down-regulate the production of pro-inflammatory cytokines.  Th2 cells are protective 

in both MS and EAE through the release of IL-10 as well as another anti-inflammatory 

cytokine, IL-4.  In addition to their anti-inflammatory processes, these cytokines also 

inhibit the demyelinating functions of macrophages [32]. In past studies, patients 

exhibiting elevated levels of Th2 cells due to parasitic infections have shown milder 

forms of MS [23].  Fleming and Fabry have proposed the use of parasites as a therapy for 

autoimmune diseases due to the increased production of Th2 they afford [33].  A 

representation of a naïve T cell into its effector and suppressive subsets is seen in Figure 

4. 

 

 

 

Secretion of IL-10, through subsets of regulatory B cells (Bregs) and regulatory T 

cells (Tregs), aids in the regulation of the immune response.  IL-10 mediates the response 

through the inhibition of pro-inflammatory cytokines as well as causing T cell 

hyporesponsiveness, or loss of T cell function.  Its role as an anti-inflammatory cytokine 

is further confirmed in IL-10 deficient mice.  Induction of EAE in these knockout mice is 

associated with a worse disease course compared to wild-type controls.  Because these 

Figure 4.  Cytokines involved and secreted in the differentiation of T cells. 
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mice are lacking IL-10, the balance is shifted to a pro-inflammatory state resulting in a 

worse disease course [34].  Furthermore, induction of IL-10 in current MS therapies 

proves to be an effective means to ameliorate the disease [35]. 

 IL-4, like IL-10, is an anti-inflammatory cytokine as it amplifies the response of 

Th2 cells.  Through the inhibition of Th1 cells, it decreases the production of TNF-α and 

IFN- [25].  Th1 and Th2 cells play antagonistic roles.  Altering disease course from 

being Th1-dominated to being Th2-dominated typically result in positive clinical effects 

for the MS and EAE [36]. 

 

B cells 

While the specific role of B cells in MS/EAE pathology remains unclear, they are 

thought to play a role in the disease process. B cells reactive to MOG have been found in 

the CNS of MS patients [37]. B cells, upon antigen challenge, differentiate into plasma 

cells and produce antibodies.  Antibodies for myelin components are present in the 

cerebral spinal fluid (CSF) of MS patients [37].  Oligoclonal immunoglobulin G (IgG) 

bands (OCBs) are found within the CSF are present in 95-100% of MS patients and 

represent immunoglobulin synthesized within the CNS.  The presence of OCBs is 

typically associated with a worse disease prognosis [37].  A study by Lucchinetti et al. 

indicates that high numbers of antibody deposits and complement activation are 

characteristic of demyelinated lesions found through histopatholigical studies of MS 

patients [38].  The activation of complement lends a hand to demyelination through 

pathogenic antibodies as well as antibody-mediated functions [39-42].   
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Regulatory Immune Cells  

Regulatory T cells 

The involvement of regulatory T cells (Tregs) in autoimmune disorders is still 

under debate [43].  While autoreactive T cells are found in all individuals, those with 

autoimmunity exhibited low levels or dysfunctional CD4
+
 Tregs [43-45]. A study done 

by Viglietta et al. demonstrated reduced numbers of CD4
+
 Tregs in MS patients 

compared to the healthy controls [44].  Contradictory studies have been publish which 

show no difference in the number of circulating Tregs, however, the suppressive 

functions of the Tregs seem to be decreased within the patient population in comparison 

to the healthy controls [43].  Whatever the case may be, these studies indicate the 

functional role of these cells in protection against an autoimmune response.  

In contrast from effector Th cells, Tregs are responsible for the down-regulation 

of antigen-specific T-cell responses and are important in the prevention of autoimmunity.  

In the thymus, autoreactive T cell clones with high avidity are eliminated through 

negative selection mediated by programmed cell death [46].  The autoreactive cells that 

escape clonal deletion within the thymus and enter the peripheral circulation are those 

responsible for the onset of autoimmunity.  While exact mechanisms are unknown, Tregs 

in EAE display protective qualities by increasing the Th2 phenotype toward an anti-

inflammatory state [46].   

Forkhead box P3 (FoxP3) is an X-linked transcription factor considered to be the 

most specific marker of Tregs [46].  The gene was originally found in scurfy mice in 

which the gene was mutated.  These mice possess a mutated FoxP3 gene, leading to a 

fatal lymphoproliferative autoimmune disorder in these mice [43].  In transgenic mice 
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with a targeted disruption of the FoxP3 gene (and subsequently CD4
+
CD25

+ 
cells), an 

almost identical condition was noted [43].  Thus, FoxP3 is considered to be a master 

regulatory molecule in Tregs [46]. 

The regulatory activity of CD4+ T cells is seemingly increased with high 

expressions of the surface marker CD25 [47] in natural Tregs (nTreg), or CD4
+
CD25

+
 T 

cells that develop and mature in the thymus for immune regulation [23].  These nTregs 

that express CTLA-4 (cytotoxic T cell lymphocyte antigen 4) and CCR4 (chemokine 

receptor) arise from previously activated cells [48] and acquire FoxP3 expression during 

maturation within the thymus [49].         

Induced Tregs (iTreg) are CD4
+
CD25

-
 T cells that acquire CD25 and FoxP3 

expression in the periphery instead of the thymus in response to inflammation or 

autoimmunity [48].  These Tregs constitute ~5-10% of circulating CD4
+
 T cells [43]. 

iTregs are induced with IL-2 and TGF-β [48].  While they have a similar phenotype as 

nTregs, these cells arise from naïve CD4
+ 

T cells [48].  These cells are responsible for the 

secretion of the anti-inflammatory cytokine, IL-10, relevant to the decrease of MS 

severity [23].  

While they function quite differently, there is a link between Th17 cells and 

Tregs.  Wahl et al. was the first to show the importance of TGF-β in Treg development.  

TGF-β is required for the differentiation of both T cell lineages (Figure 5). However, IL-6 

is also needed for Th17 production [49]. The dichotomy between Th17 and Treg cells is 

regulated at the transcriptional level. The transcription factor RORγt is required for 

Th17cells whereas Tregs require FoxP3 [49-51].  In findings from Zhou et al. FoxP3, 

from iTregs, has the ability to suppress RORγt, however, in the presence of IL-6, this 
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suppressive activity is abrogated [49, 51].  Additionally, iTregs are resistant to the effects 

of IL-6 and display a noticeable decrease of IL-6 receptors on their surface compared to 

nTregs [48].  From a study done using green fluorescence protein (GFP)
 
cells from 

FoxP3
-/- 

mice indicates that activation of nTregs with IL-6 results in a markedly 

decreased FoxP3 expression [48].  After treatment with IL-6, these nTregs were unable to 

increase the survival rate of mice with graft versus host disease [48].   In the presence of 

IL-2, however, there is a down-regulation of IL-6 receptor expression and signaling [48].  

These studies demonstrate the importance of the environment in which T cell activation 

occurs.  

 

 

 

 

The role of CD8
+
 Tregs has been overlooked since the emergence of CD4+ Treg 

involvement in autoimmunity.  CD8
+ 

Tregs are also important in the suppression of 

MS/EAE.   Through the secretion of IL-10, CD8
+ 

Tregs directly control the production of 

Figure 5. Differentiation between Tregs and TH17 with the induction of IL-6. 
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IFN-γ and the proliferation of CD8
+
 effector cells without the use of antigen presentation 

[52].  While the exact role of FoxP3 is not understood, recent studies have shown FoxP3 

expression in CD8
+ 

T cells occurs after antigen activation affording suppressive activity 

[53].  Because the role of CD8
+ 

Tregs has not been extensively studied as CD
+ 

Tregs, the 

distinctive cellular markers are not fully known [52].   Correale and Villa found that 

CD8
+
 Treg specific clones that recognize and lyse myelin-reactive CD4

+ 
T cells 

responsible for the induction of MS, are down-regulated in MS patients, specifically 

within the CSF [52, 54].  Supporting this finding, lymph cells retrieved from immunized 

mice revealed high populations of CD8
+
 Tregs when analyzed using flow cytometry [54].   

 

Regulatory B cells 

Regulatory B cells (Bregs) also act as regulators of the immune response through 

the release of IL-10 [40, 41].  Bregs secrete cytokines that down-regulate the function of 

autoreactive T cells as well as inflammation [40].  A study by Matsushita et al. proposes 

that Bregs reduce disease severity during EAE initiation and Tregs inhibit the late stage 

effects of MS [40]. In this study, the depletion of Bregs before and during disease 

initiation led to increased disease severity, whereas depletion of Bregs after the 

immunization had no effect on the disease severity [40].  Conversely, Treg depletion 

before EAE onset delayed onset by 2 days and did not significantly disturb the severity, 

however, depletion of Tregs after onset resulted in a significantly worse disease course 

[40].   The exact interactions of B cells and Tregs in the activation and progression of the 

disease remain unknown [40, 41].   

 



www.manaraa.com

14 
 

 
  

Role of Mitochondria 

Evidence suggests that mitochondrial dysfunction actively contributes to axonal 

injury and neurodegeneration [55].  The mitochondria, or the “power house” of the cell, 

serve a variety of functions, including regulation of the electron transport chain, 

adenosine-triphosphate (ATP) synthesis, ion homeostasis, lipid metabolism and apoptosis 

[56, 57].  ATP synthesis mainly occurs within the inner membrane of the mitochondria 

consisting of the electron transport chain [58].  While low levels of reactive oxygen 

species (ROS) are generated by the mitochondria through oxidative phosphorylation, 

mitochondrial antioxidant enzymes are produced to effectively remove these by-products 

[58].   

The mitochondrial membrane houses the electron transport chain.  This chain is 

responsible for the production of ATP within the cell.  The chain is made up of 4 

transmembrane complexes known as Complex I, Complex II, Complex III, and Complex 

IV [59].  Throughout the transport chain, protons are translocated across the membrane to 

produce a proton gradient.  The electron flow travels throughout the other complexes 

where it meets up with the final electron acceptor, oxygen.  From here hydrogen and 

oxygen combine to form a water molecule.  The proton gradient generated is then used 

for ATP production via oxidative phosphorylation [59].  Axonal injury and mitochondrial 

defects, due to MS, occur within each of these complexes.  These defects are responsible 

for excessive ROS and loss of ion homeostasis [55].  When ion homeostasis is lost and 

energy demands exceed ATP production, the balance of ion levels is lost eventually 

resulting in axonal degeneration and progressive neurological disability [55].   
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The mitochondrial free radical theory of aging (MFRTA) involves the generation 

of potentially damaging ROS in the mitochondria [57].  This theory explains that the 

mitochondria generate ROS that have damaging effects within all types of molecules 

[57].  When the production of reactive oxygen species overwhelms the antioxidant 

mechanism of the cell, oxidative stress leading to damage of proteins, lipids, and nucleic 

acids occurs.  This oxidative damage cannot be repaired [60, 61].  When oxidative 

damage is excessive, signaling mechanisms are in place, which lead to the death of the 

cell by apoptotic mechanisms [60].   Mitochondrial dysfunction is thought to play a 

central role in oxidative damage leading to apoptosis [27].  

Recent data suggest that accumulation of oxidative stress within the CNS plays a 

critical role in the progression of MS/EAE [62, 63].  The current paradigm supports the 

notion that MS initiation and myelin destruction are autoimmune in nature, while axonal 

degeneration, mediated by accumulation of oxidative stress, is responsible for the 

progression of the disease and the onset of permanent disability [62]. It was initially 

thought that axonal degeneration coincided with bouts of inflammation.  However, when 

inflammation subsided, axonal degeneration persisted, indicating other factors were at 

play [63]. A study done by Qi et al. showed that mitochondrial oxidative stress plays a 

role in neurodegeneration before the infiltration of the inflammatory cells.  This study 

demonstrated that suppression of mitochondrial oxidative stress, which began before the 

infiltration of inflammatory cells, ameliorates MS/EAE neurodegeneration [62].  The 

increases of mitochondrial defenses against ROS suppressed the loss of the mitochondrial 

membrane potential and protect the axon [62].  
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With the loss of the myelin sheath surrounding the axon, sodium channels are 

redistributed along the axon, and axonal transport becomes inefficient.  Therefore, the 

mitochondria are dispersed to the site of demyelination to maintain conduction [27,63].  

With this localization, the mitochondria are exposed to large amounts of reactive oxygen 

and reactive nitrogen species, such as nitric oxide (NO), which inhibits the function of 

cytochrome c oxidase and cause mitochondrial DNA damage [63].  Initially, these 

mitochondria are able to function at full capacity. However, eventually their function is 

compromised [27], resulting in damage to the respiratory chain, leading to impairment of 

ATP synthesis [63].  This has been noted in a study by Dutta et al. comparing the motor 

cortex of six control patients in comparison to six MS patients.  Their findings suggest 

that diminished products from the electron transport chain in the MS patients, indicating 

that mitochondria in these patients have limited capacities [64].  It is proposed that the 

compromised mitochondria contribute to the axonal degeneration as well as neurological 

disability within these MS patients [64]. 

FDA-approved therapies for MS exist to slow disease progression or manage 

symptoms but do not stop it.  These include immunomodulatory and immunosuppressive 

therapies that work with RR-MS, however are less effective on later stages of the disease 

[22].   This is presumably because they fail to address the mechanism of oxidative stress 

and provide a neuroprotective component. 

 

Photobiomodulation 

Photobiomodulation (PBM), or low level light therapy (LLLT), uses light in the 

far-red (FR) to near-infrared (NIR) range of 630-1000nm to regulate many cellular 
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functions [65].  For over 40 years, light-emitting diodes (LED) and low-energy lasers 

have been used to heal soft tissue injuries at an accelerated rate and to relieve chronic 

inflammation [66].  Recently, it has also been proven beneficial in restoring or preserving 

mitochondrial dysfunction, increasing energy metabolism, and improving cell viability 

through the activation of cellular photoacceptors, such as cytochrome c oxidase, as well 

as activation of transcription factors [22, 65, 67].   

Within the mitochondria, a balance between  ATP production and the production 

of ROS must be met in order to prevent inflammation [61].  Several in vitro studies have 

demonstrated an increase in ATP production in the presence of the light therapy [61].  

While mitochondria produce increased amounts of ATP due to NIR-LED treatment, it is 

also believed that PBM modulates ROS through a brief up-regulation, which induces 

transcription factors [61, 68].  The induction of transcription factors are directly linked to 

increased cell proliferation, modulation of cytokine levels, and inflammatory mediators 

[68].   

PBM uses the absorption of specific wavelengths of light to cause biological 

changes within the cell through the activation of signaling pathways [69].  These effects 

for PBM are mediated through improving energy metabolism and increasing ATP 

production.  In mammalian tissues, there are over 50 mammalian photoacceptors known 

to absorb light within this range [67, 69].  Three major photoacceptor molecules are 

hemoglobin, myoglobin, and cytochrome c oxidase [65].  Of these, cytochrome c oxidase 

of the electron transport chain, is the only tissue associated with energy functions [65, 67, 

69].  Up to 50% of NIR light administered to cells is absorbed by mitochondrial 

chromophores, including cytochrome c oxidase [65].  Evidence of cytochrome c oxidase 
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as a photoacceptor is also supported by experiments in which cytochrome c oxidase is 

inhibited [66].  Action and absorption spectra have also been used as evidence for 

cytochrome c oxidase as a photacceptor [66].  The absorption spectrum indicates 

wavelengths of light in which light is removed from the spectrum, and the action 

spectrum indicates the biological responses [66].  Because the absorption spectrum for 

cytochrome c oxidase parallels that of the protective action spectrum of the FR/NIR 

wavelengths, it is believed that cytochrome c oxidase is the primary terminal electron 

acceptor of the mitochondrial electron transport chain [65, 67].   

The exact mechanism by which the light influences cytochrome c oxidase has yet 

to be elucidated; however it is believed that a link between NO and cytochrome c oxidase 

is relevant [68].  Two pathways have been proposed as possible mechanisms for PBM 

[61, 68, 70].  NO decreases cell respiration by binding to cytochrome c oxidase and 

displacing oxygen [70].  PBM prevents binding of NO to cytochrome c oxidase through 

the dissociation of NO to cytochrome c oxidase [68, 70].  High levels of NO have been 

reported in cell cultures after PBM due to this dissociation [70].  The other plausible 

explanation is that cytochrome c oxidase acts as a nitrite reductase enzyme to dissociate 

the NO [68].  Both of these explanations result in increased ATP production [68]. 

The effect of PBM does not end with increased ATP production.  It also affects 

the production of ROS [70].  When oxygen, the final electron acceptor of the electron 

transport chain, is metabolized, ROS are produced [68].  LLLT increases oxidation, 

resulting in an increased number of ROS [68, 70].  This results in the induction of many 

transcription factors, specifically nuclear factor kappa B (NF-κB) which transcribes 

protective gene products that are anti-apoptotic and promote cell survival [70].  Figure 6 
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is a representation of how PBM activates a cascade of events leading to transcriptional 

changes and prevents cellular toxicity [68, 70]. 

 

      

 

 

Because low doses of PBM are therapeutic, it has been argued that increasing the 

dosage will have an increased beneficial effect.  While the topic is controversial, 

evidence as pointed to the fact that PBM is dose dependent, and overexposure to light can 

have detrimental effects [70].  At a low dose, PBM can enhance the proliferation of 

lymphocytes through the increased release of growth factors [70].  At elevated levels, 

PBM produces excessive ROS, excessive NO, and may activate a cytotoxic pathway all 

of which may cause cell apoptosis [70].  At low levels, PBM initiates signaling through 

cyclic AMP, but at increased doses mitochondrial permeability is compromised and 

apoptosis is induced [70]. 

Figure 6.  LLLT dissociates NO increasing ATP production and increases ROS which drives 

protection through the release of transcriptional factors, specifically NF-κB. 
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Because MS/EAE pathogenesis is thought to be due, in part, to mitochondrial 

dysfunction, this lab previously hypothesized that the use of PBM would prove beneficial 

against disease progression [22].  Our published data indicate the effectiveness of once 

daily 670nm NIR-LED treatment ameliorated EAE severity in female C57BL/6 mice.  

Upon disease initiation, the mice were placed into two groups: 670nm light treated or 

sham control, in which they were placed in the treatment chamber with no light 

administration.  In a blinded study, the mice were then graded using a clinical scale to 

judge disease severity.  A double treatment protocol was used in which mice received 7 

days of treatment, or stress only restraint, followed by a 7-day rest period (in which no 

light was administered), with a subsequent 7-day treatment and rest period.  Figure 7 

shows the influence the light therapy has by comparing the disease severity between 

treated and control groups.  The WT mice treated with the 670nm light show an improved 

clinical score in comparison to the sham, or restraint only, counterparts.  
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Again, using the double-treatment protocol, spinal cords were removed from 

MOG35-55 immunized mice at 3 time points: 2 days post onset, peak, and 2 days after the 

start of the second treatment.  Interested in cytokine involvement in EAE, QPCR analysis 

was done on IL-10 and IFN- γ.  Figure 2 shows an up-regulation of IL-10 (Figure 8A) 

during the chronic disease phase with a non-significant down-regulation of IFN-γ (Figure 

8B) [22], suggesting a role for IL-10 in the protection from clinical EAE by 670nm-

mediated photobiomodulation. 

 

Figure 7.  670nm light reduces disease severity in MOG-induced mice.  Treated mice 

immunized withMOG35-55 following the double treatment protocol display decreased 

disease severity in comparison to restraint only stress. (A)P<0.0001 by 2-way ANOVA 

(Muili et al., 2012) 
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Through use of the suppression protocol, in which mice were immunized with 

MOG35-55 and treated for 10 consecutive days post immunization, the disease course of 

WT mice were compared to IL-10
-/- 

mice.   In the findings from Muili et al, the WT mice 

subjected to 670nm light treatment developed less severe EAE in comparison to the WT 

mice that received restraint only stress, in which no light was administered (Figure 9A).  

This is indicative of a possible neuroprotective role afforded through light therapy.  In 

contrast, IL-10
-/- 

mice show no improvement in both 670nm treated and sham groups 

(Figure 9B) [22]. 

 

 

Figure 8:  Cytokine modulation using the double-treatment protocol over the course of 

EAE.  Spinal cords were isolated from mice immunized with MOG35-55 receiving the double-

treatment protocol and QPCR was performed to look at cytokine expression.  (A) IFN-Υ, (B) 

IL-10. 

(Muili et al., 2012) 
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Hypothesis 

Multiple sclerosis is a disease plaguing approximately 250,000 people in the US 

alone [1].   Previous data demonstrated the therapeutic potential of 670nm light therapy 

in the EAE model, in part through an immune mediated mechanism involving production 

of IL10 and down-regulation of the pro-inflammatory response. The goal of this new 

experiment is to identify the cellular source of IL10 implicated in the mechanism of 

disease protection. This data will provide a deeper understanding of disease protection by 

670nm light, which will be necessary as this is developed as an adjunct therapy for the 

treatment of MS.  The central hypothesis is that up-regulation of the anti-inflammatory 

cytokine, IL-10, by 670nm-mediated photobiomodulation decreases disease severity in 

the EAE model. 

 

 

Figure 9.  670nm light decreases EAE severity in WT mice but not IL10-deficient mice.  

Previous data demonstrates the protective nature of the light therapy in WT mice expressing 

IL-10 in comparison to the increased clinical scores of the IL-10-/- mice.  These data implicate 

IL10 as important in protection from EAE mediated by 670nm.  

(Muili et al., 2012) 
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Specific Aims 

I.  Investigate the role of immune modulation in the amelioration of EAE by 

photobiomodulation.   

 

II. Characterize the source anti-inflammatory cytokines in response to 

photobiomodulation by visualizing what cells are releasing IL-10 through the 

use of GFP reporter mice.   

 

 

CHAPTER II: MATERIALS AND METHODS 

Mice  

Pathogen-free female WT, IL10 deficient (IL10
-/-

), and mice genetically modified 

to express GFP following the IL-10 promoter on a C57BL/6 (B6) background were bred 

in-house from breeding pairs purchased from Jackson Laboratories (Bar Harbor, MN).  

The mice were housed in an Association for Assessment and Accreditation of Laboratory 

Care (AAALAC) accredited facility on the University of Wisconsin-Milwaukee campus 

following National Institutes of Health (NIH) and University guidelines.  Food and water 

was provided ad libitum and a 12-hour light/dark schedule was used in a temperature and 

humidity-controlled environment.  Protocols were certified by the Institutional Animal 

Care and Use Committee.  All mice used were 6-8 weeks of age.   

GFP, originally found in the jellyfish Aequorea Victoria, has been widely used in 

biochemical and cell biology studies to visualize proteins [3].  Through fusion with the 

desired protein, GFP allows visualization of the protein while it maintains its normal 
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functional properties. GFP fluoresces a vivid green color when exposed to blue light.  

When conditions prompt the expression of IL-10 in the mice expressing GFP under the 

control of the IL10 gene promoter, GFP will be expressed and the cells will glow 

allowing the location of IL-10 to be visualized in genetically altered heterozygous 

GFP/IL-10 mice. 

 

Antigens 

 MOG35-55 peptides (MEVGWYRSPFSRVVHLYRNGK) synthesized and purified 

by HPLC (GenScript, Piscataway, NJ) were used for the emulsion as well as in the 

resuspension for the cell culture. 

 

EAE induction 

 EAE was induced by active immunization with an emulsion made with MOG35-55 

and Mycobacterium tuberculosis.  The emulsion of 50 µg or 100 µg MOG35-55 peptide 

emulsified (1:1) in incomplete freund’s adjuvant (IFA, MP Biochemicals, Solon, OH) 

with 300 µg M. tuberculosis, strain H37RA (Difco Laboratories, Detroit, MI) was 

injected into mature mice (6-8 weeks old).  Emulsions were prepared using an Omni 

Mixer Homogenizer (Omni International, Kennesaw, GA).  Each mouse received 0.05 

mL of emulsion subcutaneously at four sites.  When immunized for clinical disease 

course, mice also received 300 ng pertussis toxin (PT, List Biological Labs Inc., 

Campbel, CA) prepared in with phosphate buffered saline (PBS) to keep the disease onset 

consistent throughout the mice.  The PT/PBS mixture was injected intraperitoneally at 0 

and 72 hours post immunization, per standard laboratory protocol.   
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Before the mice were injected with the emulsion, they were anesthetized using a 

ketamine (100mg/ml), xylazine (300 mg/ml) cocktail (1 ml ketamine; 0.15 ml xylazine; 

4.6 ml water) which was injected intraperitoneally. 

 

EAE clinical grading 

 Mice observed for clinical EAE beginning 7-10 days post immunization (dpi) and 

continuing daily for the duration of the experiment.  Mice were graded by a blinded 

observer using a clinical scale of 0-5 [0: healthy, no sign of EAE; 1: loss of tail tone; 2: 

hind limb weakness; 3: paresis or paralysis of one hind limb; 4: paralysis of both hind 

limbs; 5: moribund or dead].  Mice receiving a clinical score of >4 were sacrificed. 

 

Treatment 

Once mice were deemed sick, (clinical score of 1) they were designated into 

either the treatment group or sham group, receiving no light treatment.  Treatment of 670 

nm wavelength light was administered using a Gallium/Aluminum/Arsenide (GaAlA) 

light-emitting diode (LED) array (75cm
2
) (Quantum Devices, Barneveld, WI) at 67% 

intensity for 90 seconds at a power intensity of 28mW/cm
2
.  During these treatments, 

unanesthetized mice were placed in a polypropylene restraint (12.7 x9 x7.6 cm) with the 

light placed directly above the dorsal surface of the mouse for the defined treatment time. 

For sham treatment, the mouse was placed in the treatment chamber for the same length 

of time as the groups receiving light treatment but without light exposure.  This was to 

account for the effect the stress of the restraining the mice may have.   Treatment was 

applied once daily as follows: 7 days treatment, followed by 7 days rest, with 7 days 
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treatment, and an additional rest period of 7 days.  The mice received an energy density 

of 5J/cm
2
 (375 J daily total). 

For in vitro treatment experiments, Lymph node and spleen cells that had been 

extracted and set up in a cell culture (see cell culture) were also designated to either the 

treatment or sham group.  The treated cells received treated with 670 nm wavelength 

light at 100% intensity for 180 seconds using a hand held WARP 75 Light Delivery 

System (Quantum Devices, Barneveld, WI).  Treatment began 2 hours after the cells were 

resuspended then every 24 hours for 3 days.  During these treatments, the light was 

placed 2 cm above the flask for the given treatment time. For sham treatment, the flask 

was still placed in the treatment chamber for the same length of time as the groups 

receiving light treatment but without light exposure. 

 

Cell Culture 

 For in vitro  characterization of the response to NIR treatment, lymph nodes and 

spleen cells were isolated from mice immunized as above but with without PT 10-14 dpi 

or over the course of disease, as indicated.  Samples isolated over the course of disease 

defined as follows: pre-clinical phase (~10 dpi) before clinical symptoms of EAE appear; 

2 days post onset when clinical disease begins; during the peak of the disease (where 

disease course is typically the worst); 2 days into the second rest period; and 2 days post 

second treatment. Mice were sacrificed by anesthetizing them with the ketamine cocktail 

and cervical dislocation.  Using a dissection tray and sterile technique including reagent 

grade ethanol, spleens and lymph nodes were removed and suspended separately in 

Hank’s Balanced Salts (HBSS).  Six draining peripheral lymph nodes (2 popliteal, 2 
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axilliary and 2 brachial) were removed from each immunized mouse.  Single cells 

suspensions were then generated through homogenization of the removed nodes and 

spleens with autoclaved glass homogenizers.  These cells were then centrifuged at 

1250xg for 10 minutes to separate the cells from fat and debris.  Trypan blue was used to 

visualize the cells (90 µl of 0.4% trypan blue; 10 µl cells) and determine cell viability 

using a hemacytometer.  The cell count was determined using the following formula: 

(No. of cells counted) (Dilution factor) (10
4
)/ No. of squares counted = cells/ml 

 A total of 2 X 10
6
 cells/ml were then cultured in RPMI 1640 complete [penicillin 

(100 U/mL)/streptomycin (100 µg/mL), L-glutamate (2 mM), sodium pyruvate (0.1 mM), 

2-mecarptoethanol (50 mM)], 10% Fetal Bovine Serum (FBS), and MOG35-55 (10 µg/ml). 

The suspension was then distributed into T75 tissue culture flasks (TPP tissue culture; 

MidSci, St. Louis, MO); 670 nm light at 180 seconds and sham (e.g. no light) group and 

antigen vs no antigen, and stored in an incubator at 35-37 degrees Celsius at 10% CO2. 

 

RNA isolation  

The cells harvested from spleens and lymph nodes (as described in cell culture) 

were centrifuged at either 24, 48, 72, or 96 hours after incubation.  The cells were then 

homogenized in 1 ml of Trizol reagent (Invitrogen, Grand Island, NY) and frozen at -80 

°C until further use.  Total RNA was isolated by the Trizol method, according to 

manufacturer’s instructions. Briefly, the frozen cells were allowed to thaw at room 

temperature and centrifuged at 12,000xg for 10 minutes at 2-8 °C. Chloroform (200 µl) 

was added for every 1 ml of Trizol and the cells were vigorously shaken for 15 seconds, 

incubated at room temperature for 2-3 minutes, then centrifuged at 12,000xg at 2-8°C for 
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15 minutes.  The upper aqueous layer containing the RNA was carefully removed and 

placed in a clean tube.  0.5 ml isopropanol per 1 ml Trizol added to the original cell 

solution and mixed gently, followed by a10 minute incubation at room temperature.  The 

RNA was recovered through centrifugation again at 12,000xg at 2-8°C for 10 minutes.  

The supernatant was removed and the RNA was washed with 1 ml of 70% ethanol 

(EtOH) for every 1 ml Trizol.  The samples were again centrifuged at 75,000xg for 5 

minutes at 2-8 °C.  The supernatant was carefully removed and the RNA pellet was 

allowed to air-dry and resuspended in 50 µl molecular grade water. The concentrations 

and purities of the samples were assessed using a UV-2501 PC UV-VIS recording 

spectrophotometer (Shimadzu Scientific Instruments Inc.) using absorbances at 260 nm 

and 280 nm.  The samples were diluted 1:50 in 1X TE buffer (10mM Tris-HCl, 1 mM 

EDTA, pH 7.5). When necessary, RNA was concentrated using the Qiagen RNEasy Min-

Elute colums, according to manufacturer’s instructions (Qiagen, Valencia, CA). Total 

RNA concentration was adjusted by dilution to assure reverse transcription of similar 

amounts of RNA for QPCR analysis. 

 

Reverse Transcription 

 The isolated RNA samples were reverse transcribed (RT) to cDNA using the RT
2
 

HT First Strand Kit (SA Biosciences, Valencia, CA) according to manufacturer’s 

instructions.  Six microliters of genomic DNA elimination buffer (GE2) was added to 8 

µl of RNA and allowed to incubate at room temperature for 10 minutes.  Following the 

incubation, 6 µl of RT Master Mix (BC5) was added.  Reverse transcription was carried 

out using the Mastercycler Gradient PCR machine (Eppendorf’s Scientific, Hauppauge, 
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NY) at 42 °C for 15 minutes then 95 °C for 5 minutes.  Molecular grade water was added 

at a volume of 91 µl and the samples were stored at -20 °C until use. 

 

Quantitative Real-time PCR 

Real-time Quantitative PCR (RT-qPCR) is used to amplify and quantify the 

amount of template (cDNA or DNA) in a sample.  RT-qPCR allows for quantification to 

happen in real time after each amplification cycle and is paired with reverse transcription 

to quantify messenger RNA (mRNA).  The ΔΔCT (threshold cycle) programming was 

used in which fluorescence is used to determine if the sample surpasses a given threshold. 

This technique was performed using SABiosciences primers and RT
2
 SYBR Green qPCR 

master mix reagents to determine gene expression.  Samples that have undergone RT 

were used following manufacturer’s instructions.  Beta-actin (β-actin) was used as a 

housekeeping gene while IL-10, INF-γ, and IL-4 primers were used to quantify IL-10, 

INF-γ, and IL-4 expression.  The primers were designed to span introns when possible 

and were purchased from Sigma (St. Louis, MO).  Each reaction was run in triplicate 

with water blanks set as controls.  The reaction mixture for a single reaction was set up as 

follows in Table 1: 
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Table 1.  qPCR 

Component Volume (µl) 

RT
2
 SYB® Green qPCR master mix 12.5 

Primer Set 1 

Molecular grade H2O 10.5 

Total Volume 24 

 

 For each reaction, 1 µl of the sample RNA was added to 24 µl of the above 

mixture.  Assays were performed using StepOnePlus RT-PCR from Applied Biosystems 

(Carlsbad, CA).  Instrumentation was programmed for a hot start of 95 °C for 10 minutes.  

The amplification ran for a total of 40 cycles which included 95 °C for 15 seconds and 60 

°C for 1 minute.  A melt curve was programmed for 95 °C for 15 seconds, 60 °C for 1 

minute, and 95 °C for 15 seconds. Expression was quantitated via the Pfaffl method and 

normalized to β-actin.  Unlike the ΔΔCT model which assumes 100% efficacy between 

the primers, the Pfaffl method uses a standard curve of each primer to determine 

efficiencies to aid in the analysis [71]. 

 

Enzyme-Linked Immunosorbent Assay 

 Cell culture supernatants were acquired at 48, 72, and 96 hours and subjected to 

cytokine analysis using enzyme-linked immunosorbent assay (ELISA).  The cytokines of 

interest were IL-10, IFN-γ, and TGF-β.  ELISAs were performed per manufacturer’s 

instructions using the Ready-Set-Go kit from eBiosciences (San Diego, CA).  ELISA’s 

are used to detect and quantify specific proteins that have been secreted from cells.  
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Using a high binding affinity, the ELISA plate captures the target protein, which is then 

detected by a protein-specific biotinylated antibody.  Quantification is done through a 

colorimetric reaction based on activity of avidin-horseradish peroxidase (HRP). 

 Before beginning the ELISA, the 96-well plate was coated overnight with 1x 

dilution of the capture antibody in 1x coating buffer at 4°C.  The wells were then washed 

5 times with 100 µl wash buffer (PBS and 0.05% Tween-20) per well.  The wells were 

then blocked with 200 µl 1x Assay Diluent and incubated at room temperature for 1 hour.  

The plate was again washed and 100 µl of the standards or each sample was added to 

each well and incubated at room temperature for 2 hours.  The wells were washed and 

100 µl of detection antibody was added and the plate was again incubated for 1 hour at 

room temperature.  Following incubation, the plate was washed and 100 µl Avidin- HRP 

diluted in 1x Assay diluents was added to each well and incubated at room temperature 

for 30 minutes.  After a final wash cycle, 100 µl of tetramethylbenzidine (TMB) substrate 

solution was added to each well and incubated for 15 minutes.  After, 50 µl of stop 

solution (2.5N H2SO4) was added to each well and the plate was read at 450 nm within 30 

minutes of adding the stop solution. 

 

Flow cytometry 

Cells acquired from spleens and cultured and treated as previously discussed were 

analyzed by flow cytometry to characterize the phenotype of responding cells.  After the 

final light treatment, cells were incubated for an additional 2 hours to allow for 

transcription to take place.  The cells were then counted for viability using trypan blue, as 

previously described.  Using Lymphocyte Separation Medium (9.4 g sodium diatrizoate, 
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6.2 g ficoll per 100 ml of LSM) the cells were place over a density-dependent gradient to 

separate mononuclear cells.  In this process, the cell suspensions were overlaid on 5 ml 

LSM and centrifuged for 30 minutes at 500xg at 4°C (with the break turned off).  The 

interface was then removed and diluted 1:2 with HBSS and underwent two additional 

washes using HBSS. Again, the cells were then counted for viability and aliquotted into 

1.7 ml tubes at a cell count of 2.0x10
6
. 

The aliquotted cells received 5 µl FC block (eBiosciences, San Diego, CA) to limit 

the amount of non-specific binding through the FC receptors and were incubated on ice 

for 30 minutes.  The cells underwent two washes and were resuspended in 50 µl FACS 

wash buffer (0.5% PBS, 0.1% FBS, and sodium azide) and were incubated on ice for 30 

minutes with 1 µl of a designated antibody for cell surface markers. 

The cells were stained as follows: 

 

Table 2. Flow Cytometry Cell Markers 

FITC (FL1 channel) PE (FL2 channel) PerCP (FL3 channel) APC (FL4 channel) 

CD3 CD19 Foxp3 CD25 

CD3 CD4 Foxp3 CD25 

CD3 CD8 Foxp3 CD25 

Controls 

Rat IgG2a Rat IgG2b Rat IgG2a Rat IgG2b 

 

Cells were labeled with antibodies to identify T cell populations (CD3, CD4, 

CD8, CD25, and FoxP3), B cell populations (CD19), as well as macrophages (CD11b) 
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and neutrophils (Ly6G).  Species, isotype, and fluorochrome matched antibody controls 

were also used, as well as single-labeled controls to allow for proper compensation using 

the flow cytometer. Cells expressing IL-10 were identified by virtue of green 

fluorescence. The phenotype of IL10-producing (e.g., green fluorescing) cells were 

identified by virtue of interaction with specific antibodies, as outlined above.   

The antibodies were purchased from Biolegend (San Diego, CA) and eBioscience 

(San Diego, CA).  Foxp3 is an intracellular stain in which the cells were first stained 

using surface markers, then underwent permeabilization for intracellular staining.  

Following the last wash with the surface markers, the supernatant was discarded and the 

sample was vortexed to dissociate the pellet.  1 ml of Foxp3 Fixation/Permeabilization 

working solution (eBiosciences, San Diego, CA; 1 part fixation/permeabilization 

concentrate with 3 parts fixation/permeabilization diluent) was added to each sample and 

vortexed.  After a 30 minute dark incubation at 4 °C, 2 ml of 1x Permeabilization Buffer 

(1ml permeabilization buffer in 9 ml distilled water) were added to each sample.  The 

supernatant was then discarded after centrifuging the cells at 400xg at room temperature 

for 5 minutes.  The cells were then resuspended in 100 µl 1x Permeabilization Buffer 

with 1 µl of PerCP-Cy5.5 Foxp3 antibody and incubated in the dark for 30 minutes on 

ice.  Following the incubation, the samples underwent 2 washes with 2 ml 1x 

Permeabilization Buffer and resuspended in 500 µl FACS wash buffer, ready for analysis 

using flow cytometry. 

The data were collected using a dual laser BD FACS Calibur (BD Biosciences, 

San Jose, CA) using the computer program CellQuest Pro (BD Biosciences, San Jose, 
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CA).  After the data were collected, analyses were run using FlowJo software (Tree Star, 

Ashland, OR). 

 

Microarrays 

Complimentary DNA (cDNA) from the two groups (treated vs. sham) were 

further investigated using microarrays.  Microarrays are used to measure the expression 

levels of genes simultaneously using a fluoriphore-labeled target.  Using a hybridization 

protocol from Qiagen (Valencia, CA), gene expressions from both groups were 

compared.  The use of this technique allows for analysis of genes whose expression has 

been changed during the course of MS/EAE due to photobiomodulation with 670nm 

light.  Specific time points of sham and treated cells were analyzed using two kits:  Th17 

for Autoimmunity and Inflammation and Nitric Oxide Signaling Pathway, (Qiagen, 

Valencia, CA).  96h samples from our sham and treated cell pellets from cell culture were 

compared using the Th17 kit to look at inflammatory and autoimmune cytokine 

expression levels.  Our 48h samples used the nitric oxide signaling pathway to compare 

gene expression levels in our sham and treated samples. 

 

Statistical Analysis 

 Data were analyzed and statistical analyses were carried out using GraphPad 

Prism 5.0 (La Jolla, CA) or FlowJo software (Tree Star, Ashland, OR).  Clinical scores 

were analyzed using 2-way ANOVA. 
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CHAPTER III: SPECIFIC AIM I 

 

Investigate the role of immune modulation in the amelioration of EAE by 

photobiomodulation.   

 

Rationale 

While the current paradigm describes MS/EAE as autoimmune diseases mediated 

by myelin-reactive CD4
+
 Th1/Th17 cells, recent data suggest that the axonal loss 

associated with disease progression is mediated by oxidative stress. The currently 

approved therapies are of limited effectiveness, probably because they fail to prevent the 

accumulation of oxidative stress leading to axonal loss. Photobiomodulation has proven 

effective in the treatment of chronic inflammation and neurodegeneration through 

remediation of oxidative stress. Our published data demonstrated the therapeutic potential 

of 670nm-mediated photobiomodulation in part through an immune-mediated 

mechanism. Given the role of the immune response in MS/EAE pathogenesis, a better 

understanding of the effect of photobiomodulation on the immune response is necessary 

in order to proceed to clinical studies in the MS patient population.  

Through the use of cell supernatants, in which protein are found, ELISAs were 

performed to look at gene expression.  QPCR and microarrays looked at the cell pellet, 

which contains mRNA to analyze the message for protein synthesis.  Preliminary data 

showed up-regulation of IL-10 with down-regulation of INF-γ protein expression by 

ELISA when antigen-primed lymph node cells were exposed to NIR light at a 

wavelength of 670 nm [22].  Transcriptional up-regulation of IL-10 and down-regulation 
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of IFN- by QPCR analysis was also noted in the spinal cord of 670nm light treated mice 

over the course of MOG-induced EAE. The role of IL-10, and global regulation of 

inflammation, in the amelioration of EAE by 670nm light phototherapy was further 

investigated. 

 

Research Design 

Female WT and IL-10
-/- 

mice of the C57/BL6 background were immunized with 

100µg MOG35-55 emulsified in Freud’s incomplete adjuvant mixed with M. turberculosis 

H37RA.  Treatment began immediately after immunization and continued for 10 dpi.  On 

the first day of treatment the mice were assigned to the 670nm NIR-LED treated or sham 

group, and were treated accordingly using the suppression treatment protocol.  Using a 

pre-determined clinical scale, disease severity was recorded daily throughout the 

experiment.   

Both treated and sham mice were placed in a polypropylene restraint for the 

duration of the defined treatment time (90s or 180s).  The sham mice, receiving identical 

treatment without the administration of light, served as the control population.  Mice 

receiving the NIR-LED therapy at 67% intensity for 180s received 10J/cm
2 

on the dorsal 

surface.  At the end of the experiment, mice were sacrificed and their clinical grades were 

normalized to the day of onset for analysis.  In order for statistical significance to be 

achieved, anywhere from 20 to 40 mice were immunized to assure that each treatment 

group had at minimum 10 mice. 
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For cytokine and QPCR analysis, draining peripheral lymph nodes and spleens 

were removed from mice 10 dpi and set up in cell culture receiving 670nm light or no 

light.  The cells were treated and harvested at 24 hour intervals for a total of 96 hours. 

 

Results 

Cytokine analyses by ELISA shows a up-regulation of IL-10 protein in cells introduced to 

photobiomodulation 

 Lymph node cells cultures receiving 670nm light treatment as previously 

described show a down-regulation of IFN-γ in comparison to the sham controls at 48h 

and 96h [22].  In the current study, the largest decrease of IFN-γ was seen at the 96h time 

point (Figure 10A). This agrees with our published data of spinal cord analysis with 

ELISA analyzed throughout the course of the experiment [22], particularly with the 

QPCR data obtained 2 days post secondary treatment (Figure 8).  Conversely, IL-10 

production was up-regulated in the presence 670nm light, however, maintained the level 

of production throughout the course of the experiment (Figure 10B).  
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QPCR analysis indicates a down-regulation of IL-10 mRNA in the presence of 670nm 

light 

 QPCR analysis of cDNA from lymph node cells treated as previously indicated 

showed a down-regulation of message for both IFN-γ and IL-10 cytokines.  

Contradictory to what was previously shown from in vivo analysis of cytokines through 

QPCR, the in vitro study of lymph node cells indicate that the light is not only down-

regulating IFN-γ but having the same effect on IL-10 production when normalized to the 

sham control (Figure 11).  This indicates that the light has a different effect on translation 

by increasing gene expression, than on transcription.  

 

Figure 10.  Up-regulation of IL-10 in the presence of 670nm light.  ELISA analyses of IL-10 

and IFN-γ at 48h and 96h time points show a decrease in IFN-γ production with a 

subsequent increase in IL-10 levels when 670nm light as administered.    IL-10 levels within 

the two groups remain constant throughout the duration of the experiment.  670nm light 

impacts the production of pro- and anti-inflammatory cytokines. 

(This experiment must be replicated as these results are compiled from a single experiment, 

thus accounting for the lack of error bars.) 
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Microarrays 

 

 

670nm light globally down-regulates inflammatory markers in vitro 

  Microarray analysis was performed on 96h cDNA obtained from lymph node 

cells.  This microarray tested 96 different genes and cytokines involved in pro- and anti-

inflammatory processes.  The 670nm light experimental group, normalized to the sham 

control, resulted in 2-3 fold increases of anti-inflammatory genes, with a 2-5 fold 

decrease of pro-inflammatory genes (Table 3).  Chemokine ligand 7 (CCL7), a regulator 

of macrophages, and chemokine ligand 1 (CXCL1), displaying neuroprotective functions, 

were both up-regulated in the presence of 670nm light.  IL-17a, a pro-inflammatory 

cytokine that enhances the production of NO was also increased. 

Figure 12 shows a scatter plot of the genes and cytokines that were analyzed with 

the microarray.  Analysis of 96h 670nm cDNA was normalized to the sham control.  

Figure 11.  QPCR analysis shows down-regulation of IFN-γ and IL-10.  QPCR analysis from 

cell cultures from spleen cells show a down-regulation of both pro- and anti-inflammatory 

cytokines in the presence of 670nm light.  670nm light therapy down-regulates IL-10 

production in vitro. 
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Placing the parameters at a 2-fold increase allows for better visualization of these 

cytokines affected by the light.  A marker has also been placed to indicate IL-10 within 

the plot.  Again, indicating that the transcription of IL-10 is unaffected by the light 

treatment. 

 

 

 

 

Figure 12.  Scatter plot analysis from inflammatory microarrays.  Emphasizing a 2-fold 

increase, the scatter plot displays the cytokines both increased and decreased in the 

presence of 670nm light.  670nm light decreases IFN-γ production. 



www.manaraa.com

42 
 

 
  

Decreases were found in JAK3 and TBX21, both transcription factors for IFN-γ, 

IL-21, which is regulated by JAK3, and subsequently IFN-γ.  These results agree with the 

findings from preliminary data that IFN-γ is down-regulated in the presence of the light 

therapy [22].  Overall, the down-regulations seen agree with the understanding that 

670nm light decreases or inhibits pro-inflammatory processes. 

 

 

 

  

  

 The nitric oxide signaling pathway microarray, performed on the 48h lymph node 

samples, was normalized to the sham control.  Figure 13 is a scatter plot that highlights 

the signaling markers that fall outside of a two-fold increase.  Up-regulation was seen in 

signals that produce ROS (NOXA1) and free radicals (NOS2) lending to the mechanism 

of the light.  Up-regulation was also seen in those that display protective qualities such as 

preventing against peroxidation (GPX5) and oxidative stress (UCP3).  Down-regulation 

of signals were much more prevalent than up-regulation.  Down-regulation was seen in 

CAPNS1, in which activation is triggered by oxidative stress, DYNLL1, which 

Table 3.  Gene and cytokine fold changes in microarray analysis of 96h 670nm treated sample 

in comparison to the 96h sham control. 
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destabilizes nitric oxide synthesis, GPX1, an antioxidant, as well as PRDX2, which plays 

an antioxidant protective role. 

 

 

 

 

 

 

Figure 13.  Scatter plot analysis from NO signaling microarrays.  Emphasizing a 2-fold 

increase, the scatter plot displays the signaling molecules both increased and decreased in 

the presence of 670nm light.  670nm light briefly up-regulates ROS. 

 



www.manaraa.com

44 
 

 
  

Table 4 shows an itemized list of the signaling molecules that were regulated by 

at least a two-fold increase or decrease in the presence of 670nm light therapy when 

normalized to the sham control.        

 

 

 

 

Discussion 

 Previous data from our lab has shown a decrease in disease severity in WT mice 

receiving 670nm light therapy.  Results have also showed that in the presence of light, 

IL-10
-/- 

mice display the same disease course as their sham counterparts in comparison to 

the WT treated mice who display a less severe disease course than the WT sham mice 

(Figure 9) [22].  This is indicative of a protective role afforded through light therapy 

through the action ofIL-10. This hypothesis is further supported by in vitro cytokine 

analysis.  ELISA data demonstrated that 670nm light-treated cultures displayed a 

Table 4. NO signaling molecule fold changes in microarray analysis of 48h 670nm treated 

sample in comparison to the 48h sham control. 
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decrease in IFN-γ production and an increase inIL-10 over the course of 96h culture 

(Figure 10).  Agreeing with this data, IFN-γ levels in QPCR as well as microarray 

analyses were also decreased when treated with 670nm light.   

The current studies utilized QPCR microarray to investigate the effect of 670nm 

light treatment on inflammation at a global level. The microarray utilized allowed for 96 

different genes to be analyzed at one time.  In addition to a decrease in IFN- γ expression, 

molecules important the regulation of IFN or regulated by IFN were also decreased, 

including TBX21, a transcription factor for IFN- γ, and JAK2, a kinase regulated by IFN- 

γ. In addition IL-21, a cytokine that uses that JAK/STAT pathway was also down-

regulated.  Not only is the light therapy responsible for the production of protective 

cytokines, it is also responsible for a down-regulation of the transcription factor as well 

as the pathway for IFN-γ production.  This is indicative of the protective role afforded by 

the light therapy.  A down-regulation is also seen in colony-stimulating factor 3 (CSF3) 

which controls the production, differentiation, and function of granulocytes. 

Up-regulation of CXCL1 displays beneficial qualities toward the amelioration of 

MS/EAE.  Omari et al. found that mice with increased levels of CXCL1 display milder 

forms of EAE than those at normal or below normal levels [72].  Mice displaying higher 

CXCL1 had decreased inflammation and demyelination, suggesting a neuroprotective 

role for CXCL1 [72].   

As mentioned earlier, photobiomodulation (PBM) briefly up-regulates ROS and 

NO, which increases production of NF-κB, involved in the production of protective 

genes.  Due to the findings of this microarray, we can attribute this up-regulation of NO 

to IL-17a.  IL-17a regulates NF-κB through enhanced production of NO [70]. 
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Our previous data demonstrated up-regulation of IL-10 protein expression by 

ELISA. However, IL-10 mRNA expression was decreased compared to the Sham control, 

as demonstrated by QPCR and microarray analysis.  These apparently contradictory 

results could be explained by a number of factors.  First, could be due to the fact that IL-

10 is regulated at the transcriptional and post-transcriptional levels [73].  Transcription is 

responsible for converting DNA into RNA, and is the first step in the gene-making 

process.  Post-transcription is the regulation of gene expression at the RNA level.  In 

post-transcription, mechanisms are put in place to extend the half-life of the RNA 

molecule and protect it from degradation.  These modifications allow for faster, more 

complete protein synthesis.  In a traditional sense, if transcription is increased, translation 

would increase resulting in higher gene expression.  At the post-transcriptional level, if 

transcription remains constant, messenger RNA (mRNA) would remain the same.  Post-

transcriptional modifications can be made at this point which can alter the level of protein 

expression from single mRNA molecules.  Another reason for this discrepancy could be 

that both QPCR and microarray analyses are merely snapshots of gene expression at a 

given time.  The fact that IL-10 levels are higher in the ELISA may indicate that the 96h 

time point was too late to capture maximum IL-10 message expression. 

The fact that IL-10 production shows an increasing trend in the QPCR analysis 

may simply indicate that we are not allowing enough time between treatment and the 

harvesting of cells.  In the current experiments, the cells were harvested 2h after 

treatment to allow for translation to occur.  Again, we know that the light temporarily 

increases NO in order to activate signaling pathways toward protective gene expression.  

Microarray analysis at 96h is still associated with increased NO, perhaps due to the 
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production of IL-17a.  This indicates that two hours after treatment may not enough time 

for the transcription factors to respond and generate increased gene expression.  Perhaps 

harvesting the cells at later time points will allow enough time for the message to be 

translated, because as it stands, two hours disrupts signaling before the translation can 

have an effect on gene expression. 

The decrease in IFN-γ through the down-regulation of its transcription factor is 

one way the light therapy is offering protection.  Although not enough time was allowed 

for the up-regulation of the protective cytokines to come to fruition, the initial steps 

alluding to protection are seen, including up-regulation of IL-10. 

 

 

CHAPTER IV: SPECIFIC AIM II 

 

Characterize the source anti-inflammatory cytokines in response to photobiomodulation 

by visualizing what cells are releasing IL-10 through the use of GFP reporter mice.   

 

Rationale 

It is accepted that anti-inflammatory cytokines ameliorate the severity of MS and 

EAE. The FDA approved therapies, all active through immunomodulatory or 

immunosuppressive mechanisms, function in least in part by inducing anti-inflammatory 

cytokines. Data generated by this lab suggest that photobiomodulation induced by 670 

nm light improves the severity of EAE at least in part through the production of IL-10 

[22]. Because the production of IL-10 is known to amelioration clinical EAE, it is 
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important to know which cells are responsible for the synthesis of IL-10 in an infected 

mouse.  Thus, draining peripheral lymph node and spleen cells from MOG35-55 

immunized mice were analyzed by flow cytometry to identify the immune cells 

responsible for the secretion of IL-10 induced by 670 nm-induced photobiomodulation. 

 

Research Design 

 Female mice of the C57/BL6 background expressing GFP under the control of the 

IL-10 promoter, and WT mice were immunized with 100µg MOG35-55 emulsified in 

Freud’s incomplete adjuvant with M. tuberculosis H37RA at 4 dorsal sites.  Mice were 

sacrificed 10 dpi and draining peripheral lymph nodes and spleens were removed cultured 

in vitro in the presence of antigen.  The cells were subjected to either 3 days of NIR-LED 

light therapy using a handheld WARP 75 Light Delivery System, or no light at all.  After 

the treatment period, the cells were stained with cell surface and intracellular makers to 

identify B cells, T cells, and regulatory cells and subjected to analysis using flow 

cytometry.  To assure that a sufficient number of cells were attained for analysis, 4 to 7 

mice were immunized for lymph nodes or spleen removal.  

 

Results 

Photobiomodulation induces IL-10 production. 

 Our previous data showed the up-regulation of IL-10 secretion by QPCR and 

ELISA of cells and tissue isolated from 670 nm light treated, MOG35-55-immunized mice 

over the course of EAE. Clinical data demonstrated that mice genetically deficient in IL-

10 lacked the ability to recover from EAE when treated with 670nm light therapy, 
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confirming the importance of IL-10 in protection against clinical EAE afforded by 670 

nm-mediated photobiomodulation.   

To directly investigate the induction of IL-10 by 670 nm light, flow cytometric 

analysis of lymph nodes extracted from 7 IL-10/GFP mice was performed.  The analysis 

was gated on the lymphocyte population using a forward vs. side scatter plot.  As 

expected, an increase in IL-10 production was seen in the 670nm treated cells in 

comparison to the sham controls (Figure 14).  

 

 

 

 

 

 

  

Figure 14:   670nm light induces IL-10 production by lymphocytes.  Lymph node cells from 

MOG35-55 immunized mice were subjected to a 3 day light treatment (670nm) or received 

no light treatment.  Flow cytometry analysis gated on lymphocytes showed an increase in IL-

10 production in 670nm light treated cells compared to the sham control.  Induction of IL-10 

by 670nm light would be expected to protect against EAE. 
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Because it is known that both B and T cells secrete IL-10, further analysis was 

done to determine which of these lymphocytic populations were responsible for the 670 

nm light-induced increase in IL-10 production.  The results showed that CD3, not CD19 

cells were responsible for the largest increase in IL-10 secretion (Data not shown).  Thus, 

subsequent studies focused on characterization of T cells.  

Regulatory CD4
+
 and CD8

+
 T cells are known to secrete IL-10. To identify with 

population of regulatory T cells was induced by 670 nm light, flow cytometric analysis of 

draining lymph node cells was performed. Cells from IL-10/GFP immunized mice were 

labeled with CD8, CD4, and CD25 surface markers, and the analysis was gated on the IL-

10
+ 

lymphocytes. The highest increase is found in CD8
+
CD25

- 
cells (Figure 15B). There 

was also a modest increase in CD4
+
CD25

+ 
and CD4

+
CD25

- 
cells of the light treated 

cultures (Figure 15D). 
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Figure 15: Increased production of IL-10 in lymphocytes induced by 670nm light. Two 

populations of regulatory T cells – CD8+ and CD4+-- have been implicated in protection 

against EAE.  Lymph node cells isolated from MOG35-55 immunized mice were given a 3 day 

light treatment (670nm) or no light treatment.  Flow cytometry gated on IL-10 revealed an 

increased population of CD8+CD25-IL-10+ cells induced by 670nm light.  A modest increase in 

IL-10 expression by CD4+CD25+ and CD4+CD25- cells in the treated group was also noted.  

670 nm light induces a population of IL-10 expressing CD8+CD25- cells which could protect 

against clinical disease. 
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Photobiomodulation increases FoxP3 expression 

 Production of IL-10 by CD25
+
FoxP3

+
 regulatory T cells is well-characterized 

[74].  To further investigate the induction of regulatory T cells by 670 nm light, spleen 

cells from 6 WT immunized mice were labeled with CD8, CD4, and CD25 extracellular 

markers as well as the intracellular marker, FoxP3, to look at potential Treg involvement. 

Looking at FoxP3 expression gated on CD3 cells, we noted an increase of FoxP3 in cells 

cultured with antigen and treated with 670nm light, in comparison to those receiving no 

light, or not cultured with antigen (Figure 16).    

 

 

 

 

 

 

 

 

Figure 16: 670nm light in the presence of antigen induces Foxp3 expression.  Spleen cells 

from mice immunized with MOG35-55 were cultured with and without antigen and received 

670nm light or no light for 3 days.  Flow cytometric analysis gated on CD3+ T cells shows an 

increase of Foxp3+ cells when exposed to antigen and 670nm light.  Induction of FoxP3 

expression by T cells exposed to 670nm light plus antigen suggests regulatory T cells may 

play a role in disease protection afforded by 670nm light. 
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Due to the fact that the CD8
+ 

cells demonstrated the greatest increase in 670 nm-

induced production of IL-10, we wanted to see if this stood true for the cells producing 

FoxP3. Using the same parameters but gating on CD8 and CD4, analyses show that the 

FoxP3 producing cells are CD4 and not CD8 (Figure 17). 

 

 

 

 

 

 

The phenotype of the CD4
+
 FoxP3

+ 
cells was further analyzed. Gating on FoxP3

+
, 

the expression of CD4 and CD25 was investigated in 670 light treated vs. sham treated 

cells, cultured in the presence or absence of antigen. Analysis of the sham –Ag group 

(e.g., the immunized control group) revealed a CD4
+
CD25

-
Foxp3

+ 
population (Figure 

18A).  The sham +Ag group has the same CD4
+
CD25

-
Foxp3

+ 
population plus a 

population of CD4
+hi

CD25
- 
cells (Figure 18B).  670nm light treatment resulted in the up-

regulation of CD4
+
CD25

+
FoxP3

+ 
cell population, expected to be regulatory T cells 

Figure 17: 670nm light induces Foxp3 expression in CD4+ T cells.  Spleen cells from mice 

immunized with MOG35-55 received 670nm light for 3 days.  Flow cytometric analysis 

gated on CD8+ or CD4+ T cells, respectively, shows an increase of CD4+Foxp3+ cells with 

670nm light exposure. CD4+Foxp3+ T cells induced by 670nm light in the presence of 

antigen could play a role in amelioration of EAE by 670nm light. 
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(Figure 18C).  However, in the 670nm +Ag group there is also a CD4
+hi

CD25
- 
population 

(18D).   

 

 

 

 

 

 

Figure18: Induction of CD4+CD25+Foxp3+ cells by 670nm light treatment.  Spleen cells from 

MOG35-55 immunized mice cultured with and without antigen were treated with light 

(670nm) or no light for 3 days.  Flow cytometric analysis of populations gated on Foxp3+ 

lymphocytes shows an up-regulation of CD4+CD25+Foxp3+ T cells in the light treated cells 

compared to the sham controls. There is also an up-regulation of CD4+CD25-Foxp3+ T cells 

with 670nm light.  Induction of CD4+CD25+Foxp3+ cells, expected to be regulatory T cells, by 

670nm light would be expected to reduce autoimmunity in EAE. 
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Discussion 

Preliminary data has shown the beneficial effect that light therapy has on 

decreasing the clinical severity of EAE.  In the study by Muili et al., as well as our 

findings from the first specific aim, this decrease in disease is seemingly due to the 

increase of IL-10 followed by a decrease in pro-inflammatory cytokines afforded through 

the use of PBM [22].  The next logical step, then, was to determine the cells that, in the 

presence of the light therapy, were responsible for the secretion of IL-10.  The use of 

GFP aided in this finding because of its interaction with the IL-10 promoter.  Therefore, 

every time IL-10 gene is transcribed GFP will be attached.  Because our mice are bred in-

house, it is important that a homozygous WT female is bred with a heterozygous 

GFP/WT male to ensure that the mice are IL-10/GFP heterozygotes.     

Through the removal of spleens and lymph nodes of immunized mice, cells could 

be stained for specific surface markers.  This fluorescence-activated cell sorting (FACS) 

analysis is used as yet another confirmation that the 670nm light is inducing a population 

of IL-10 producing cells.  What differentiates FACS from the other conformational tests 

is that it allows us to look further into what cells in particular are involved.  By staining 

the cells with the surface markers CD3, CD4, CD8, CD19, and CD25 we were able to 

distinguish what cells were involved in the highest production of IL-10 in the presence of 

the light therapy.  It is important to note that B cells are involved in the production of IL-

10; however, the light therapy has no effect on the up-regulation of these cells.  While 

further analysis on the therapeutic role B cells play in MS/EAE may be looked at down 

the road, these results ultimately led to the investigation of T cells. 
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Gating on the IL-10 population, the highest increase of IL-10 production came 

from CD8
+
CD25

- 
cells (Figure 5).  CD25 expression is typically linked to regulatory 

immune cells in which CD25 expression occurs in the thymus (nTreg) or within the 

periphery (iTreg) [48].  In CD4
+
CD25

- 
cells, the expression of CD25 depends on the 

secretion of IL-2 by antigen-stimulated T cells within the peripheral lymphoid organs 

[74].  It is important to note, however, that there are circumstances in which Tregs may 

lack, or lose, CD25 markers.  Bonelli et al. demonstrated that CD4
+
CD25

-
FoxP3

+ 
cells 

display a suppressive function similar to CD4
+
CD25

+
FoxP3

+ 
cells in a model of 

autoimmunity [75].  To see if this was the case for the CD8
+
CD25

- 
population, FoxP3 

staining was done.  As a reminder, FoxP3 is an intracellular marker typical of most 

regulatory cells, specifically CD4
+ 

Tregs and some CD8
+ 

Tregs [75, 76].  The results 

from this finding indicated that these CD8
+ 

cells responsible for such a sharp increase of 

IL-10 do not contain FoxP3.  This does not mean, however, that they are not regulatory 

CD8
+ 

cells.  Because CD8
+ 

Tregs have not been investigated as much as CD4
+ 

Tregs, the 

specific markers of regulation have not been fully established, and FoxP3 expression may 

not be a specific marker for CD8
+ 

Tregs [76].  The majority of FoxP3-expression is 

linked to MHC class II restricted CD4
+ 

cells [76].  In a study by Trandem et al., it was 

hypothesized that IL-10 production from CD8
+ 

T cells may be another mechanism in 

place to diminish destruction of tissues in models of acute encephalitis or it may be used 

as a self-regulation of CD8
+ 

production [77].  Further analysis of these cells would need 

to be done to determine regulatory functions or the possible relationship between 

cytotoxic CD8
+ 

T cells and IL-10 production.   
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While the largest increase of IL-10 was seen in CD8
+
CD25

- 
T cells, we chose to 

investigate the role of FoxP3 expression in CD4
+ 

T cells in the presence of 670nm light 

because more research has gone into the expression of these cells.  In putative CD4
+
 

regulatory cells, FoxP3 expression is up-regulated in the presence of 670nm light (Figure 

7).  By gating on the population of FoxP3, Figure 9 looks at CD4 and CD25 markers to 

further identify these cells.  In the sham –Ag group, in which the cells are only exposed 

to the self-reactive peptide at immunization, CD4
+
CD25

-
FoxP3

+ 
cells are present.  There 

are conflicting views as to the functionality of this population of cells.  The majority of 

the characterization of these cells has occurred in systemic lupus erythmatosus, a 

systemic autoimmune disease.  In a published manuscript from Yang et al. this 

CD4
+
CD25

-
FoxP3

+
 population,

 
as well as CD4

+
CD25

low
FoxP3

+
 cells,

 
were identified to 

be distinct from Tregs, not only phenotypically, but through the production of increased 

IL-2 and are, therefore, activated T cells [78].  Bonelli et al., however, found these cells 

to resemble functional Tregs in vitro [75].  In this study, they also found that this 

population of putative Tregs did not display increased levels of IL-10 or TGF-β, 

indicating that these cells are not cytokine mediated [75].  What they concluded is that 

these cells resemble a population partially functioning of Tregs [75].  Including the Ag in 

the sham culture resulted in an induced population of CD4
low

CD25
-
FoxP3

+
 cells.   

The exact role and relationship of these two different populations has yet to be 

established.  However, because these cells are acquiring FoxP3 expression in the 

periphery (i.e. iTregs) there is clearly a maturation process that must occur.  In this 

instance, it is possible that FoxP3 expression is acquired before CD25 expression, giving 
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us this population of CD4
+
Cd25

-
FoxP3

+ 
cells.  This would indicate that these cells are 

immature Tregs waiting for CD25 expression to maturate. 

The CD4
+
CD25

-
FoxP3

+ 
cells found in the sham group, seemingly acquire CD25 

expression in the 670nm treated cells cultured in the absence of Ag (Figure 18).  

Similarly, the CD4
+
CD25

-
FoxP3

+
 population in the sham +Ag group is less robust and an 

increase of CD4
+
CD25

+
FoxP3

+
 cells, presumably Tregs, arise.  These findings would 

agree with hypothesis that these are immature Tregs acquiring CD25 expression in the 

periphery.  It would also go to stand that the 670nm light therapy induces this immature 

population of putative Tregs to become fully functional Tregs.  

   

 

CHAPTER V: DISCUSSION 

Discussion 

As the most common cause of neurologic disorders of early to middle adulthood, 

multiple sclerosis and its complexities are of interest of many researchers [2].  Previous 

research describes the disease as an immune-mediated demyelinating disease of the CNS, 

initiated by MHC class II-restricted, auto-reactive T cells due to [32,64].  These T cells 

are responsible for secreting pro-inflammatory cytokines (INF-γ and IL-17) important in 

the pathogenesis of disease.  The exact mechanisms of the disease are unknown; 

however, mitochondrial dysfunction [32] and oxidative stress [2] have been shown to 

play a role in axonal loss.  While many anti-inflammatory, immunomodulatory, and 

immunosuppressive therapeutics demonstrate proven efficacy in the delaying the 
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progression of the disease, there are no approved therapeutic agents which prevent or 

reverse the disease [64]. 

Experimental autoimmune encephalomyelitis (EAE) is the primary animal model 

for MS, sharing clinical, mechanistic, and histopathological aspects with MS. It should be 

noted that as an animal model, EAE does have limitations.  A major criticism of EAE is 

that it is not a spontaneous disease.  While a spontaneous disease model has been 

developed with transgenic mice, most EAE activation requires active immunization as 

well as the use of an adjuvant to further induce disease [20, 79].  EAE has also been 

criticized because the disease is often studied in in-bred animals, in which much of the 

genetic heterogeneity has been removed.  It can be argued, though, that this homogeny is 

required for the reproducibility of the disease among generations of the animals [20]. 

Preliminary data in the EAE model suggests disease amelioration is possible 

using 670 nm light therapy [22].  This was not only seen through a decrease of clinical 

scores in 670 nm light-treated animals in comparison to sham treated mice, but also 

found in pro-inflammatory/anti-inflammatory cytokine ratios [22].  The current studies 

further investigated the mechanism of immune modulation by 670nm-mediated light 

therapy.  Our ELISA data show up-regulation of IL-10 and a down-regulation of IFN-γ in 

the 670nm treated group.  In the presence of the light, the gene expression of IL-10 is 

increased.  QPCR analysis shows trends of increasing IL-10 production in the presence of 

light.  An increase in IL-10 production was also increased in the presence of 670 nm light 

in our FACS and ELISA analyses, as well as with ELISA and QPCR analyses in recent 

published data [22].  Decreased IL-10 expression levels in our 670 nm light group in 

comparison to the sham group when analyzed using QPCR between the current data and 
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that previously published by this laboratory may be due to differences in experimental 

design.  Previous QPCR data from Muili et al., demonstrating increased anti-

inflammatory and decreased pro-inflammatory cytokines with 670nm light treatment was 

performed on spinal cords of treated mice extracted throughout the course of the 

experiment [22]. The current studies were performed on lymphoid cells isolated from 

immunized mice and treated in vitro.  It is important to note that IL-10 production is not 

limited to lymphocytes.  Through the removal of spleens and lymph nodes for the in vitro 

analyses, we are targeting B and T cells and looking at the effects the light has on these 

cells specifically.  While there is certainly a case for the regulatory effects of the light 

within these two cell populations, perhaps the spiked increase in the in vivo analyses is 

due to non-lymphocyte cells, such as astrocytes or microglia, reacting to the light to 

produce IL-10 as well [80].   

The protective nature of the light therapy could be due to either a down-regulatory 

effect that the light has on pro-inflammatory cytokines, an increase in IL-10 afforded by 

the light that results in shifting the environment to a more anti-inflammatory disease 

state, or, most likely, both factors.  This is supported by the findings from ELISA data 

that showed an increase in IL-10 production with a decrease in IFN-γ (Figure 10), and 

QPCR analysis that shows that even when IL-10 levels are low, IFN-γ levels continue to 

decrease (Figure 11).  

It is reasonable to believe that harvesting cells 2h post treatment does not allow 

enough time for transcription to take place.  This is also supported by the fact that upon 

light exposure, an initial spike in ROS and NOS occurs in order to prompt transcription 

factors to produce protective genes [70].  Eventually the ROS species will be decreased 
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resulting in long term protection.  The microarray at 96h (Figure 12) showed increased 

levels of IL-17A, which is known to be responsible for the up-regulation of NO [81], 

indicating that transcriptional processes were merely beginning to take place, not 

allowing enough time for translation to occur.  Because it is known that IL-10 is 

regulated primarily by transcription and post-transcriptional factors [73], allowing more 

time for the light to take full effect would presumably increase IL-10 expression. 

Due to our findings that 670nm light had little effect on B cells we chose to focus 

on IL-10 production in Tregs.  Supported by a study by Matsushita et al., up-regulation of 

Tregs or IL-10 production through Tregs after disease onset will prove to be most 

beneficial in disease amelioration [42].  The study by Matsushita et al. proposed that 

Bregs reduce disease severity during EAE initiation and Tregs inhibit the late stage 

effects of MS [42].  The deletion of Bregs before immunization resulted in a more severe 

disease than when Bregs were deleted during EAE progression.  Similarly, the deletion of 

Tregs had no effect on disease onset, but severely exacerbated the disease in later stages 

[40]. 

While further characterization of the putative Treg population is necessary, our 

data suggest that the light is inducing iTregs to produce IL-10.  This is due to the fact that 

FoxP3 expression levels increased in the presence of the light.  The light also affected the 

production of CD25
+ 

cells as well.  A population of CD4
+
CD25

-
FoxP3

+ 
cells found in the 

sham controls, presumably immature Tregs, gain CD25 expression when light was 

administered.  Through the induction of CD25 on these cells, the population is thought to 

mature to become functional Tregs.  While more studies are necessary to confirm 
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findings, the cells responsible for the up-regulation of IL-10 are likely responsible for the 

decrease in clinical disease severity seen in in vivo experiments.  

 

Future Directions 

 To continue this study, a number of experiments must be performed.  More 

experiments of in vitro studies needs to be done to understand the effect the light has on 

message and protein expression of IL-10.  There needs to be further clarification on the 

potential decrease of message and increase gene expression of IL-10 seen in QPCR 

analysis.  A longer incubation period between treatment and cell harvesting may allow 

for more complete transcription and translation.  From there, characterization of the 

CD4
+
CD25

-
FoxP3

+ 
and CD4

+
CD25

+
FoxP3

+ 
populations must be done to verify 

suppressive properties.  Characterization can be done through co-culture and transwell 

assays.  Further investigation of the IL-10 producing CD8
+ 

T cells and their role in the 

amelioration of EAE would also be beneficial in understanding disease amelioration 

through the use of 670 nm light.  An adoptive transfer experiment could be done once it 

is determined what cells are most beneficial in the amelioration of EAE.  These cells 

would be transferred into a recipient host in hopes of transferring the immunologic 

benefits of the disease, or induce tolerance to the disease.   

In vivo studies of IL-10
-/-

 mice must also be repeated.  Treatment through a 

suppression protocol in these IL-10
-/-

 mice would help to further understand disease 

course.  In this protocol, the mice would be treated for 10 consecutive days after 

immunization.  This addresses the issue concerning at which time point is treatment is 
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most beneficial; treatment before disease onset, or treatment throughout the disease 

course. 

  

Conclusion 

 Photobiomodulation has the potential to decrease MS/EAE disease severity 

through the up-regulation of IL-10 and down regulation of IFN-γ.  While the largest 

increase of this IL-10 production was seen in CD8
+
CD25

- 
cells, increased production of 

FoxP3 led our analyses toward CD4
+ 

T cells.  While confirmation of this population of 

putative regulatory cells is necessary, an increase in CD4
+
CD25

-
FoxP3

+ 
T cells appear to 

be responsible for the decreased disease severity found in WT mice receiving 670nm 

light therapy.  With this knowledge, PBM is a promising adjunct therapy in the 

amelioration of MS. 
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